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1. Introduction
The Problem of the Unsolved Problems

To our dismay, it appears that, during the past 100 or more years,
humanity has been unable to solve, or unwilling to cope with, any
of the major problems threatening its own survival. And it appears
to be getting ever worse!

Examples of major problems not resolved, as of now:

I Nuclear disarmament - problem present for the past 75 years

I The demographic time-bomb - problem known for � 75 years

I Climate change - problem identified � 100 years ago

I Safe production & storage of clean and renewable energy

I Excesses of turbo-capitalism & of a dysfunctional monetary
system

I Neglect and contempt of cultural values and good traditions
in our modern societies

I Inability to respect adversaries and to reach good compromises



Learning from Great People
I Fostering secular, enlightened, liberal societies; integration of

immigrants from other cultural backgrounds into our societies
I Equal rights and equal privileges for women
I Arab-Israeli conflict, conflicts in Syria, ..., Northern Ireland,

Catalonia, Eastern Europe, Asia, South America, ...

We should try to learn from people who did solve some major
problems:

and from several further people I will mention in the course of
these talks.



An Unsolved Problem in Physics & Summary of lectures

“It seems clear that the present quantum mechanics is not in its
final form.” (P.A.M. Dirac)

My goal in these lectures is to sketch a possible completion of QM.

Summary:
I will first present a short account of the transition from classical physics
to quantum physics – from the Platonic Realm, where strict causality,
determinism and reversibility prevail, to the Aristotelian Realm, where
chance occupies center stage, the future is uncertain and time has an
arrow. This transition represents a revolution not only in our conception
of the paradigms underlying natural science and our description and
manipulation of Nature, but also in the area of new technologies born
from quantum science, such as lasers, semi-condurctors, transistors (and
their many applications, e.g. in computers), superconductors, nuclear
magnetic resonance imaging, nuclear power plants, atomic waepons, ...

I then present a leisurely introduction to Quantum Theory, summarizing
various general (and possibly puzzling) facts. I conclude with a preview
of the “ETH- Approach” to Quantum Mechanics discussed in some detail
in subsequent lectures.



2. An Impressionistic Account of Classical Physics

Classical Physics was born from observations of the night sky
(observatories in Samarkand, Jaipur, ...), and in particular of
the motion of the moon and the planets, of solar and lunar eclipses,
moreover from the study of optics (reflection and refraction of
light – Snellius’ laws) and of simple (hydro-) static phenomena
(Archimedes’ lever rule and law of buoyancy).

Images of the night sky, a solar eclipse, and of the Jaipur observatory:



Paradigms of Classical Physics

The astronomers and philosophers of antiquity discovered that there are
regularities, Laws, which rule the heavenly phenomena. Their discoveries
inspired the pre-socratic natural philosopher Leucippus and his pupil
Democritus to formulate the following paradigms, which, to this day,
contine to influence scientific thinking enormously:

I. The natural phenomena are ruled by rigid eternal laws

As Socrates taught his followers: The Universe is ordered and governed
by a wonderful intelligence and superior wisdom.

II. The Law of Causality

Every event is the necessary consequence of some cause.

III. Matter is composed of atoms

The smallest constituents of matter are atoms, which are indecom-
posable; (% Einstein, Perrin). There exist finitely many species of
atoms (in antiquity sometimes identified with the Platonic bodies).

In classical mechanics, atoms are often idealised as point particles.



From the observed motion of planets to Kepler’s Laws and
Newtonian Mechanics

Already in antiquity, the geocentric system of Ptolemy (Earth in center of
Universe, orbits of planets described by epi-cycles) was abandoned in
favor of the heliocentric system (Sun in center of Universe) propagated by
Copernicus. And Aristotle proposed foundations of mechanics that failed.

In the 17th Century, the precise observations of planetary motions by
Tycho Brahe gave rise to Kepler’s Laws (orbits of planets=ellipses with
the sun in a focus, area law,...). These laws and Galileo’s discovery of the
importance of the notion of acceleration gave rise to the birth of
Newtonian mechanics.

Brahe Kepler Galileo Newton



The notion of “state” in Newtonian mechanics
The eminent French Mathematician René Thom insisted on the idea that
mathematical notions and concepts play a crucial role in the discovery of
physical theories. (And, of course, theoretical ideas and concepts play an
essential role in planning successful experiments!)

Besides the notions of function, curve, acceleration, ..., an example of a
mathematical notion essential in the development of Newtonian
mechanics is the notion of state. In Newtonian mechanics, the state of
the Universe is described by

⇠ =
�
x1,v1, . . . ,xN ,vN

�
,

specifying the positions, xj , in space and the velocities, vj , of all
heavenly bodies, j = 1, 2, . . . ,N. Alas, N is an unknown, giant number!

Obviously we don’t know the positions and velocities of all heavenly
bodies! However, the solar system is far away from other stars and
planetary systems, whose influence on motions in the solar system we can
therefore at first neglect. And the influence of small bodies, such as
asteroids and comets, on planetary motion is often neglected, too.

! Physics only works when intelligent idealizations and approximations
are made!



Newton’s Equations of Motion
Thus, let us consider a mechanical system, S , e.g., the solar system,
idealized as an isolated system of relatively few “particles”. The set of
all states of S is its state space, X.

To formulate dynamical laws, the notion of time is crucial. For Newton,
time takes real values and is absolute. The state of S at time t is given
by a t-dependent point ⇠t =

�
x1(t),v1(t), . . . ,xN(t),vN(t)

�
in X.

In his magnum opus ‘Philosophiæ Naturalis Principia Mathematica’,
Newton proposed a dynamical law for the time-dependence of the state
⇠t in the form of a system of ordinary di↵erential equations:

d⇠t
dt

⌘ ⇠̇t = X
�
⇠t
�
, ⇠t 2 X , (1)

where X is a map from X to the “space” of vectors attached to X; (in
mathematics, X is called a vector field over X).

Puzzle: The sun and the planets are extended bodies. Why is it
reasonable to describe the state of the solar system by merely specifying
the center-of-mass positions and -velocities of the sun and the planets?
The reason for this lies in the form of the law for the gravitaional force.



Newton’s Inverse-Square Law and Newton’s Theorem
The (value of the) gravitational force, F , between two point-like bodies
of masses m and M separated by a distance r is given by

F = GN
m ·M
r2

(GN : Newton’s const.) (2)

Newton’s Theorem: The gravitational force exerted by a spherically
symmetric body of mass M on bodies outside it is identical to the force
exerted by a point-like body of the same mass M concentrated in its
center of mass. – (This took Newton years to prove.)

It is a good approximation to describe the sun and the planets as
spherically symmetric bodies. Using Eqs. (1) and (2) and Newton’s
Theorem for two bodies (N = 2), one derives the three Laws of Kepler,
as Newton demonstrated.

When N � 3 the mathematical problems encountered in the analysis of
Eqs. (1) and (2) become formidable! Great mathematicians including
Émilie (Marquise) du Châtelet, Euler, Maupertuis, Lagrange, Laplace,
Hamilton and Poincaré have made monumental contributions to the study
of Newtonian mechanics (including, e.g., discovery of chaos for N � 3!)



Physical Quantities (“Observables”) in classical mechanics
In physics, one attempts to characterize a physical system, S , in terms of
a family, OS , of physical quantities whose values can, in principle, be
determined precisely in every state ⇠ 2 X of S . Among physical quantities
there are: The total energy of S , its total mass, the number and positions
of all particles of S that are found in a region ⌦ of physical space, ...
All physical quantities of an arbitrary system S are represented by
real-valued functions on the state space, X, of S . They have the
following properties:

I All physical quantities in OS take precise values in every (pure)
state ⇠ 2 X.

I (Provided that the force law X in Eq. (1) has suitable properties)
one has that if ⇠t0 is known at a single time t0 one can in principle
calculate the values of all elements of OS at all times t!

I Paradigms I and II of Leucippus and Democritus are valid; and III is
considered to be an excellent idealization in celestial mechanics.

I The world as described by Newtonian (Hamiltonian) mechanics
resembles an ultra-reliable Swiss watch – a feature that made
Newton tumble into a nervous depression...



The Problem of Scales in Physics

The project of solving Newton’s equations of motion for a system con-
sisting of N = O(1023) particles, e.g., all atoms in a mole of gas, is bound
to fail. There isn’t any computer that could be used to implement it. –
Even if there were such a computer we would not learn anything compre-
hensible from the quasi-infinity of numerical data it would produce!

One must therefore construct approximate descriptions, or E↵ective
Theories, of systems containing a very large number of particles, such as
a galaxy or a gas. This is usually accomplished by introducing coarse
collective degrees of freedom. – Among such e↵fective theories I mention:
Thermodynamics (Carnot, Mayer, Clausius, Lord Kelvin,...) & Stat.
Mechanics (Maxwell, Boltzmann, Einstein, Gibbs,...), Continuum
Mechanics & Fluid Dynamics (Bernoulli, Euler, Navier, Stokes,
Cauchy, Helmholtz, Kolmogorov,...), Density Functional Theory, etc.

Such E↵ective Theories are used to describe phenomena on macroscopic
scales; e.g., turbulence, large molecules,... One might then aim at (and
sometimes succeeds in) deriving an e↵ective theory from an underlying
microscopic theory considered to be more fundamental (“Reductionism”).
Most often, though, this exceeds our intellectual capacities.



The Failure of Classical Physics – the Birth of Modern
Physics

It turned out that, without modifying one or both of these theories, it is
impossible to unify Newtonian mechanics with Maxwell’s theory of
electromagnetism. Furthermore, none of these older theories allowed one
to understand phenomena such as the spectra of atoms, e.g., Balmer’s
formula for the spectrum of a hydrogen atom. They did not enable one
to understand the stability of atoms, molecules, condensed matter, stars
(Chandrasekhar limit). They could not be used to describe magnetism,
semi-conductors, superconductors, etc. On the basis of the theories of
classical physics one could not understand the photoelectric e↵ect, the
functioning of lasers, solar panels, ...

During the 20th Century, these di�culties gave rise to two

Revolutions in theoretical physics:

1. The geometrical theories of Special Relativity (Poincaré and
Einstein) unifying mechanics and electromagnetism, and of
General Relativity (Einstein) superseding Newton’s law of universal
gravitation with a more general, geometrical theory.



The Two Revolutions in Physics of the 20th Century
One aspect of relativistic theories is that they are never fully predictive
(for lack of complete knowledge of initial conditions), and hence 9 a
fundamental dichotomoy between past and future:

| {z }
t0: time right after inflation! event horizon) initial conditions not fully accessible!

Past = History of Actualities (Facts) / Future = Ensemble of Potentialities

This fundamental dichotomy should be and has been retained in:

2. Quantum Mechanics (the subject of the remaining lectures!)



3. The “Dada” of Quantum Mechanics
“Paradoxically, [Dada’s] activities of deconstruction and destruction of
languages translated itself into long-lasting works that opened up major
new avenues ...” (see Larousse. Dada: Cabaret Voltaire, Zurich 1916).

This reminds us of the role Quantum Mechanics has played in physics:
It has deconstructed the language of Classical Physics and has opened up
major new avenues towards understanding Nature.

Yet, the following amounts to an intellectual scandal:

“What we don’t do is claim to understand Quantum Mechanics.
Physicists don’t understand their own theory any better than a typical
smartphone user understands what’s going on inside the device.”

(Sean Carroll, in: ‘New York Times’ 2019)

The Heros of Quantum Theory:

Planck Einstein Heisenberg Dirac

,



The Beginnings of Quantum Theory
Quantum Theory started in 1900 with Planck’s formula for the spectral
energy density, ⇢(⌫,T ), of black-body radiation, a discovery inspired by
experimental data gathered in connection with work for the lighting of
the streets of Berlin; i.e., it is an outgrowth of applied science.

⇢(⌫,T ) =
8⇡

c3
⌫2 · h⌫

eh⌫/kBT - 1
(3)

where ⌫ = frequency, T = absolute temperature of radiation.
Fundamental constants: c : speed of light. h: Planck’ constant,
kB : Boltzmann constant (/ 1

NA
); whence, with Newton’s constant GN ,

`P
2
:=

GN · h̄
c3

(Planck length)

The constants c , h, kB , `P stand for � 4 (past or future) Revolutions
in theoretical physics:

c : Special Relativity / h: Quantum Mechanics / kB : Atomism &
Statistical Mechanics / `P: General Relativity & Quantum Gravity (?)



Generalities -1: Physical Quantities in Quantum Mechanics
In all physical theories, physical quantities are represented by
“hermitian matrices” (abstract self-adjoint operators).
In Classical Physics, the matrices representing physical quantities of a
system S are given by real-valued functions on the state space, X, of S .
They act as multiplication operators and generate an abelian algebra.

In Quantum Mechanics (QM), physical quantities of S , such as its
energy, momentum, angular momentum, particle number, etc. are
represented by non-commuting hermitian matrices (Heisenberg, 1925)

Thus, in QM, physical quantities do usually not have precise values in
any state of the system. They have the meaning of potentialities
(in the sense of Aristotle), and one can predict their values only with
certain probabilities. Non-commuting pairs of physical quantities cannot
be measured simultaneously, and their measured values obey the
celebrated Heisenberg uncertainty relations.

Example: The color of a component of S (when illuminated by light) can
be a physical quantitiy. In QM, such components are chameleons: Their
colors are fundamentally uncertain and depend on context!

In QM, potential events are special physical quantities repesented by
orthogonal projections, whose actions do not commute, either.



Experimental confirmation of these claims: Double-slit
experiment – “interference”

In the left cavity, 9 an electron gun, separated from right cavity by a
double-slit screen; e- hits the green screen with distr. as indicated:



Generalities - 2: Waves or particles? Waves and particles!
) prob{e-passes through u & arrives in ⌦}

+ prob{e-passes through d & arrives in ⌦}
(*)

⌧ prob{e-arrives in ⌦}

If projections representing potential events were commuting (e.g., in the
presence of “decoherence”) we would observe equality in (*), because the
sum of the projections repr. the events “e- passes through u/d” is unity:

“e- passes through u + e- passes through d” = unity (!)

The illumination of the cavity to the right of the double slit by (e.g.,
laser) light has the e↵ect that the “electron wave” (de Broglie) is
converted to a “corpuscle” and the quantum world approaches the
classical world (Darwin, Mott, ...; see also Wheeler’s “retarded choice”)

Radioactive ball emitting ↵-particles, dark cavity ↵-particle tracks, illuminated cavity



Generalities - 3: “The Problem of Hidden Variables in
Quantum Mechanics”

“Die Logik nicht gleichzeitig entscheidbarer Aussagen” - E. Specker, 1960
La logique est d’abord une science naturelle. - F. Gonseth

“Kann die Beschreibung eines quantenmechanischen Systems durch
Einführung von zusätzlichen – fiktiven – Aussagen so erweitert werden,
dass im erweiterten Bereich die klassische Aussagenlogik gilt ... ?
[meaning that all statements/results of experiments on the system could
be embedded in a Boolean lattice.]

Die Antwort auf diese Frage ist negativ, ausser im Fall von Hilbertschen
Räumen der Dimension 1 und 2. ... Ein elementargeometrisches
Argument zeigt, dass eine solche Zuordnung (such an embedding)
unmöglich ist, und dass daher über ein quanten-mechanisches System
(von Ausnahmefällen abgesehen) keine konsistenten Prophezeiungen
möglich sind.”

In his paper, Specker does not present any details concerning the
“elementargeometrische Argument”. They were provided in the famous
paper by Kochen and Specker, seven years later, which I paraphrase next.



The Kochen-Specker Theorem
Simon Kochen and Ernst Specker, 1967

Question: 9 a hidden-variables theory recovering the predictions of

quantum mechanics; or, in other words, can the predictions of quantum

mechanics be embedded in a Boolean lattice?

Let S be a physical system to be described quantum-mechanically.
Its Hilbert space of pure state vectors is denoted by H; ...
If the answer to the above question were “yes” this would imply
that 9 a measure space (⌦,F) and maps f and ⇢,

f : A = A⇤ 2 B(H) 7! fA : ⌦! R, fA is F-measurable (1)

µ :  2 H 7! µ[ ] = probability measure on (⌦,F) ,

with the following properties.

(P1) Preservation of expectation values: For every A = A⇤ 2 B(H),

k k-2h ,A i =
Z

⌦
fA(!) dµ[ ](!)



Properties of a putative embedding in a Boolean lattice

(P2) If u : R ! R is an arbitrary bounded measureable function
then

fu(A) = u � fA.

Note: (P1) and (P2) are compatible with each other (check!);
and (P1) and (P2) imply the following fact:

(P3) Given any abelian algebra M of commuting self-adjoint
operators acting on H, then

f : A 2 M 7! fA 2 L1(⌦)

is an algebra homomorphism; i.e.,

fA1·A2
= fA1

· fA2
, 8A1,A2 in M.

(Easy to prove if dim(H) < 1!)



The Kochen-Specker Theorem

As already noticed by Specker in 1960, a hidden-variables theory
satisfying (P1) - (P3) exists if dim(H) = 1 or 2, (QM of a spin-1

2

object – nowadays called “Qbit”, which sounds more interesting).

Theorem. (Kochen & Specker, 1967)
If dim(H) � 3 , a hidden-variables theory satisfying (P1)-(P3) does not
exist.

Proof. We consider a particle, whose spin degree of freedom is described
by a vector operator, ~S , acting on the Hilbert space H = C3 ' R3 ⌦ C,
(i.e., the particle has spin 1). Let (~n1, ~n2, ~n3) be the standard ortho-
normal basis in R3, and set Sj := ~S · ~nj , j = 1, 2, 3. Then

S1 =

0

@
0 0 0
0 0 -i
0 i 0

1

A , S2 =

0

@
0 0 i
0 0 0
-i 0 0

1

A , S3 =

0

@
0 -i 0
i 0 0
0 0 0

1

A .

One thus observes that the operators Pj := 1- S2

j , j = 1, 2, 3, are three

mutually commuting orthogonal projections of rank 1, with
P

3

j=1
Pj = 1 .



Arbitrary orthonormal bases in R3

More generally, for an arbitrary vector ~e in S2, P(~e) := 1- (~S · ~e)2
is an orthogonal projection projecting onto the one-dimensional
subspace of H spanned by ~e.

⇥
Thus, the matrix elements of P(~e)

in the basis (~n1, ~n2, ~n3) are given by P(~e)ij = eiej , 8i , j .
⇤

For an arbitrary orthonormal basis, (~e1, ~e2, ~e3), one then finds that

3X

j=1

P(~ej) = 1 , P(~ei ) · P(~ej) = �ijP(~ei ) . (2)

The projections {P(~ej)}3j=1
are functions of a single self-adjoint

operator

A :=

3X

j=1

↵jP(~ej) , ↵1 < ↵2 < ↵3 . (3)

generating a maximally abelian subalgebra of B(H) = M3(C).



A fatal assumption
We now assume that 9 a hidden-variables theory satisfying
properties (P1), (P2) and (P3).

Since P(~e )2 = P(~e ), it follows from (P2) that

P(~e ) 7! fP(~e ) =: �~e (4)

is a characteristic function on ⌦. Eq. (2) implies that, for an
arbitrary orthonormal basis (~e1, ~e2, ~e3),

3X

j=1

�~ej = 1, on ⌦ . (5)

(For simplicity, we assume here and in the following that ⌦ is a
discrete set.) For any point ! 2 ⌦,

'!(~e ) := �~e(!) (6)

defines a function on S2 with the following properties:



Strange functions on the unit sphere in R3

(i) It takes only the values 0 and 1, i.e.,

'!(~e ) = 0 or 1, for any unit vector ~e 2 S2.

(ii) If ~e belongs to any orthonormal basis
�
~e1 ⌘ ~e, ~e2, ~e3

 
of R3

then the value, '!(~e ), of '! on ~e should be independent of
the choice of ~e2 and ~e3, and

3X

j=1

'!(~ej) = 1 .

This follows from Eqs. (5) and (6).

(iii) Properties (i) and (ii) imply that the function '! is an
additive measure on the lattice of orthogonal projections
acting on C3

= R3 ⌦ C, 8! 2 ⌦ .



Das “elementargeometrische Argument”
The evaluation of a function '! with properties (i) - (iii) on finitely
many unit vectors in R3, which give rise to finitely many orthonormal
bases in R3, leads to the contradiction that, for some unit vectors ~e,
'!(~e) = 0 and '!(~e) = 1, depending on which completion of ~e to an
orthonormal basis of R3 is considered – “contextuality”.

Kochen and Specker have found an explicit construction of finitely many
unit vectors in S2 leading to this contradiction. By now the best variant
of their construction appears to require only 18 unit vectors.

There is an abstract proof of the claim that functions '! on S2 with
properties (i) - (iii) do not exist, which is based on Gleason’s theorem:2

Property (iii) says that the function '! is an additive measure on the
lattice of projections, 8! 2 ⌦. Gleason’s theorem then says that

9 a density matrix �! > 0, with tr(�!) = 1, such that

'!(~e) = tr
�
�! P(~e)

�
) = h~e,�! ~ei .

This shows that 9 a unit vector ~e such that 0 < '!(~e) < 1. But this
contradicts property (i) !

2
I am grateful to N. Straumann for having explained this argument to me.



Connection to Kakutani’s theorem

We note that Gleason’s theorem apparently implies that the functions
'!(~e) are continuous in ~e.

Thus, let us consider an arbitrary real-valued, continuous function, ',
on the n-dimensional sphere Sn in Rn+1 centered at the origin O.
Dyson’s variant (Ann. Math. 54, 534-536 (1951)) of Kakutani’s theorem
says that 9 n + 1 points, x1, x2, . . . , xn+1, on Sn such that the n + 1 unit
vectors

�
~ej := O xj | j = 1, 2, . . . , n + 1

 
are mutually orthogonal, and

For n = 2, this contradicts properties (i) and (ii) of the functions '! !

Remarks:

1. There is a variant of the Kochen-Specker theorem, due to David
Mermin, based on studying 3 physical quantities (components of 3
spin- 1

2
operators) with the following properties:



Gleason’s theorem and Bell’s inequalities

When the values measured for these quantities in a certain state of
the system are multiplied, using props. (P1) – (P3), one obtains a
number whose sign is opposite to the one of the number obtained
when the multiplication is done using the rules of QM.

2. Gleason’s theorem can be generalized as follows: Additive measures
on the lattice of orthogonal projections of a general von Neumann
algebra are given by normal states on the von Neumann algebra3. –

Another, better known approach to the non-existence of hidden
variables theories of QM is based on:

3. Bell’s inequalities: These are inequalities on correlations between
outcomes of some family of commuting measurements on two
“causally independent” systems, A(lice) and B(ob). Bell’s
inequalities show that the range of quantum-mechanical correlations
is strictly larger than the range of corresponding classical
correlations.

3
see, e.g., L. J. Bunce & J. D. Maitland Wright, BAMS, 26, 288-293 (1992)



Generalities - 4: The Phenomenon of Entanglement
Consider a composite system, S = A_ B . Alice, A, can experiment on
subsystem A, and Bob, B , can experiment on subsystem B .

A B

If A and B do their experiments one after the other one, they usually
learn strictly less than if they do simultaneous, coordinated experiments!

A_B

This phenomenon is a manifestation of entanglement and of the
“non-locality” of QM.



A Manifestation of Entanglement: Bell’s Inequalities
Let A and B be two (space-like separated) “Qbits”. A maximally
entangled state of A_ B is given by the spin-singlet (or Bell) state

 :=
1p
2

⇥
| "iA ⌦ | #iB - | #iA ⌦ | "iB

⇤
2 C2

A ⌦ C2

B . (B1)

We define a “correlation matrix,” E , by setting

E (~e1, ~e2) := h ,A~e1 · B~e2 i,
where A~e : spin component k~e in A, B~e : spin component k~e in B .

In QM, E (~e1, ~e2) = - ~e1 · ~e2 . (B2)

We consider the following combination of correlations:

F (~e1, ~e2, ~e
0
1
, ~e 0

2
) := E (~e1, ~e2) + E (~e1, ~e

0
2
) + E (~e 0

1
, ~e2)- E (~e 0

1
, ~e 0

2
). (B3)

Existence of “local” hidden variables in QM would imply that

-2  F (~e1, ~e2, ~e
0
1
, ~e 0

2
)  2 , (B4)

8 choices of ~e1, ~e2, ~e 0
1
and ~e 0

2
; (an easy exercise!). But, in QM, one can

choose ~e1, ~e2, ~e 0
1
and ~e 0

2
such that

F (~e1, ~e2, ~e
0
1
, ~e 0

2
) = 2

p
2 ! (B5)



Proof of Bell’s Inequalities

To show (B2), choose ~e1 =

0

@
0
0
1

1

A and ~e2 =

0

@
sin✓ sin'
sin✓ cos'

cos✓

1

A, with ' = 0.

If (classical) local hidden variables existed then

E (~e1, ~e2) =

Z

⌦

a~e1(!) · b~e2(!)dµ[ ](!), (B6)

for some probability measure dµ[ ]; (see Kochen-Specker theorem).
Since A2

~e1
= 1 and B2

~e2
= 1, we have that

|a~e1(!)| = 1 and |b~e2(!)| = 1, a. e.

Recalling definition (B3) of F (~e1, ~e2, ~e 0
1
, ~e 0

2
), applying (B6) to each term

in F (~e1, ~e2, ~e 0
1
, ~e 0

2
), and using the elementary inequality (exercise)

-2  x y + x y 0
+ x 0 y - x 0 y 0  2, (B7)

for arbitrary x , y , x 0 and y 0 in the interval [-1, 1], we conclude that (B4)
holds.



Proof completed
[Note that

x y + x y 0
+ x 0 y - x 0 y 0

= x(y + y 0
) + x 0

(y - y 0
),

and, under our hypotheses, |x |  1, |y + y 0|+ |y - y 0|  2. Hence (B7)
follows.]
Choosing, e.g.,

~e1 :=

0

@
0
0
1

1

A , ~e2 :=

0

@
0

1/
p
2

-1/
p
2

1

A

~e
0

1
:=

0

@
0
-1
0

1

A , ~e
0

2
:=

0

@
0

-1/
p
2

-1/
p
2

1

A , (B8)

and using definition (B3) of F and identity (B2) with (B8), we find that,
according to QM,

F (~e1, ~e2, ~e
0
1
, ~e 0

2
) = 4 · 1p

2
= 2

p
2 ! (B4) violated!



More general results on Bell’s inequalities

S = S1 _ S2, with HS = H1 ⌦H2. Families of operators

Di :=
�
O 2 B(Hi ) |O

⇤
= O, kOk  1

 
, i = 1, 2.

If local hidden variables existed then Di ! Di (⌦, µ) (real random
variables on ⌦ bounded in absolute value by 1), with

D1 3 A 7! a 2 D1(⌦, µ),

D2 3 B 7! b 2 D2(⌦, µ). (B9)

Correlation matrices:

MKL
Q :=

�
� | �k` := tr(⇢Ak ⌦ B`), k = 1, . . . ,K , ` = 1, . . . , L

 

MKL
C :=

�
� |�k` :=

Z

⌦

ak(!)b`(!)dµ(!), k = 1, . . . ,K , ` = 1, . . . , L
 
,

(B10)

where Ak 2 D1, ak 2 D1(⌦, µ), k = 1, . . . ,K , B` 2 D1, b` 2 D2(⌦, µ),
` = 1, . . . , L; ⇢ is a density matrix on HS , dµ a probability meas. on ⌦.



Tsirelson’s Theorem

Theorem: Let � 2 MKL
Q . Then there is a constant, KG > 1, such

that
� := K-1

G � 2 MKL
C , for arbitrary K , L.

The constant KG has been introduced and estimated by Grothen-
dieck in his work on tensor products of topological vector spaces
and is therefore called “Grothendieck constant”. The exact value
of KG is not known. A known upper bound due to Krivine (which
has been shown not to be strict) is

KG <
⇡

2log(1+
p
2)

⇡ 1.782.

As an exercise you may try to choose spaces H1 and H2, operators
A1, . . . ,AK ,B1, . . . ,BL and corresponding classical random
variables a1, . . . , aK , b1, . . . , bL such that � 6= � ; (see, e.g.,
Mermin’s work on Bell’s inequalities!)



Generalities - 4: The Schrödinger Equation does Not
Describe the Time Evolution of States in QM

(I) To understand this, we consider, for example, the Wigner’s friend
paradox (see Wigner; Hardy; Frauchiger-Renner; ...):

Courtesy Frauchiger & Renner

F measures the spin of the green particle in the vertical direction. After a
successful measurement, states of F and of the particle are entangled.
F makes predictions about future measnts. using a mixed state, while W
uses unitary evolution of pure initial state of entire lab, including F, to
make his predictions. Then the statistics of future measurement outcomes
predicted by F and W are contradictory. – Well, this only shows that:
The state of the lab evolves non-linearly; W’s predictions are wrong.



Quantum theory cannot be fully predictive, because ...
(II) A Gedanken-Experiment (due to Faupin-F-Schubnel) that is, perhaps,
more compelling than “Wigner’s friend,” or the F-R version thereof:

Two particles (silver atom & electron), P and P 0, prepared in spin-singlet
initial state,  L/R ,

4 with orbital wave functions chosen such that P pro-
pagates into the cone opening to the right, while P 0 propagates into the
cone opening to the left and ending in a detector behind a spin filter,
(except for very tiny tails leaking beyond these cones).

As a consequence of cluster properties of propagator the time evolution
of P is ess. independent of the one of Q := P 0 _ spin filter_ detector

Alice Bob

| {z }
ess. support of orbital wave fu. of P’ ess. support of orbital wave fu. ofP

4
nowadays called a Bell pair of Qbits



... because Quantum theory is fundamentally probabilistic

Temporary assumptions (leading to a contradiction!):

i. P and P 0: Spin- 1
2
particles prepared in a spin-singlet initial state;

spin filter prepared in a poorly known initial state not (necessarily)
entangled with initial state of P 0 and P .

ii. Dynamics of state of total system fully determined by Schrödinger
equation. In particular, initial state of spin filter determines whether
P 0 will pass through it or not, (given that the initial state of P 0 _ P
is a spin-singlet state, with P 0 and P moving into opposite cones).

iii. Correlations between outcomes of spin measurements of P 0 and of
P are as predicted by standard quantum mechanics, (invoking, e.g.,
“Copenhagen interpretation”) – “non-locality” of QM.

Fact: For short-range interactions, the Schrödinger evolution of the state
of the system factorizes into ess. free evolution of P , tensored with the
evolution of Q := {P 0 _ spin filter_ detector}, up to tiny errors. This
follows from choice of initial conditions & cluster props. of propagator!
Hence the spin of P is ess. conserved before its measurement!



and, yes, the Schrödinger Equation does not describe the
time evolution of states in QM!

) If the evolution of the state of the total system were fully determined
by a Schrödinger equation then:
Expectation value of spin of P ⇡ 0,8 times! ) The state of the spin of
P 0 after interaction of P 0 with spin filter & detector does not bias the
state of the spin of P when measured, (e.g., in a Stern-Gerlach exp.)!

Thus, if the usual correlations between two “independent” measurements
(here of z-comp. of spins of P 0 and of P), predicted on the basis of the
projection postulate of “Copenhagen”, are observed5 then it follows that
the Schrödinger equation, and nothing more than it, cannot describe the
evolution of states of systems when measurements occur.
! We must find the correct probabilistic law of evolution of states in

QM that replaces Schrödinger evolution !

However, it is safe to assume the validity of Heisenberg-picture evolution
of operators representing physical quantities of isolated systems (define!),
which is perfectly deterministic (while the evolution of states is
stochastic) . ) Equivalence of the Heisenberg picture and the standard
Schrödinger picture is an erroneous claim!

5
as suggested by the experiments of Aspect and others



Generalities - 5: “Non-locality” of QM versus “Einstein
causality”

It is possible that the measurements of components of the spins of P and
of P 0 are made in space-like separated regions of space-time, so that the
localization regions of the corresp. projection operators, ⇧P 0

� 0,~ez
and ⇧P

�,~n,
with � = ±,� 0

= ±, are space-like separated. The order in which these
two measurements occur then depends on the rest frame of the observer
who records the measurement data. This implies that the operators
⇧P 0

� 0,~ez
· ⇧P

�,~n and ⇧P
�,~n · ⇧P 0

� 0,~ez
must have the same e↵ect when applied

on the state of the system. . . . The most general way in which this can
be guaranteed is to require that

⇧P 0

� 0,~ez · ⇧
P
�,~n = ⇧P

�,~n · ⇧P 0

� 0,~ez (1)

This is locality, or Einstein causality, of quantum theory (% RQFT). It
fits perfectly into QM!

—

The “non-locality of QM” is often misrepresented, and the talk about a
tension between QM and Relativity Theory is misguided and misleading.



Quantum Teleportation – Bennet, Brassard et al.
This is a quantum phenomenon impossible in the classical world.

In a central region, O, one prepares an entangled state of two particles
of spin 1

2
. One of them, labelled “A,” is sent to Alice, the other one,

labelled “B,” is sent to Bob.

Simultaneously, Alice catches a second particle of spin 1

2
in a state

|'i ⌘ |'
A
i unknown to her. She then measures the value of a physical

quantity, X , in the composite state |'i
A

⌦ |•
A
i, of the two particles:



Quantum Teleportation proves the “non-locality” of QM
Let ⇠ be the value of X measured by Alice. She calls Bob by phone to
communicate to him this value, an information that is transmitted purely
classically. Knowledge of ⇠ motivates Bob to perform a ⇠-dependent
operation of precession of the spin of the particle he had received, whose
state was actually already changed by Alice’s measurement of X –
“non-locality” of QM!

) E↵ect of measurement of X by Alice, with value ⇠, and of
Bob’s⇠-dependent spin precession on the state of the particle he had
received yields the following transformation of the state of Bob’s particle:

|•
B
i measnt. ofX! |intermediate state(X )i

B

⇠-dep. precession! |'i
B

Conclusion: The state |'i of the second particle received by Alice,
unknown to her, has been teleported to the particle received by Bob!

The mathematical details met in the analysis of teleportation represent a
simple exercise in linear algebra, a “child’s play”so to say.

We proceed to discussing more serious, deeper dynamical aspects of QM!



Some mathematical details on quantum teleportation
Our arguments rely on the Copenhagen interpretation of QM: Let � be
the initial state of a system S . If an “observable” X =

P
⇠⇧⇠ of S is

measured with outcome ⇠⇤ 2 �(X ) then the state of S immediately after
the measurement of X is given by

⇧⇠⇤�/k⇧⇠⇤�k (T1)

The probability to measure ⇠⇤ in state � is given by

prob
�
⇠⇤|�

 
= k⇧⇠⇤�k2 (Born’s Rule) (T2)

—
Alice and Bob capture, each, one particle of a Bell pair initially prepared
in the state  introduced in Eq. (4) above, denoted A and B ,
respectively. Alice also captures a second particle, C , with spin 1

2
whose

spin is in some state

' :=

✓
u
v

◆
2 C2, |u|2 + |v |2 = 1,

unknown to Alice. We define S := (C _ A)_ B .



Further details
The initial state of S is given by

� := '⌦  =
1p
2

⌦
'⌦ | "iA ⌦ | #iB -'⌦ | #iA ⌦ | "iB

↵
(T3)

Alice now measures an “observable” X given by

X = ⇧1 + 2⇧2 + 3⇧3 + 4⇧4, with ⇧i := |�i ih�i | , (T4)

of the sub-system A_ C , where

�1 :=
1p
2

⌦
| "iC ⌦ | #iA - | #iC ⌦ | "iA

↵
(s = 0)

�2 :=
1p
2

⌦
| "iC ⌦ | #iA - | #iC ⌦ | "iA

↵
(s = 1,m = 0)

�3 :=
1p
2

⌦
| "iC ⌦ | "iA - | #iC ⌦ | #iA

↵
(s = 1)

�4 :=
1p
2

⌦
| "iC ⌦ | "iA + | #iC ⌦ | #iA

↵
(s = 1) (T5)

⇥
Note that 1p

2
(�3 + �4) = | "iC ⌦ | "iA, i.e., s = 1,m = 1, etc.

⇤



More details
When Alice has measured the “observable” X the state of
S = (C _ A)_ B is given by one of the following rays (normalization
unimportant):

[⇧1'⌦  ] =�1 ⌦
⌦
- h" |'iC | "iB - h# |'iC | #iB

↵

[⇧2'⌦  ] =�2 ⌦
⌦
- h" |'iC | "iB + h# |'iC | #iB

↵

[⇧3'⌦  ] =�3 ⌦
⌦
+ h" |'iC | #iB + h# |'iC | "iB

↵

[⇧4'⌦  ] =�4 ⌦
⌦
+ h" |'iC | #iB - h# |'iC | "iB

↵
(T6)

Each measurement outcome, i = 1, 2, 3, 4, has the same a-priori
probability given by k⇧i'⌦  k2 = 1

4
.

Alice communicates the measurement result, ⇠⇤, classically (e.g., by
telephone) to Bob. If she has measured the value 1 for X , i.e., S is in
state [⇧1'⌦ ], then, according to the first equation above, particle B in
Bob’s lab is in state [-'] = ['], and Bob doesn’t take any further action.

If Alice measures 2 and communicates this result to Bob then ...



Yet some further details
... Bob performs a spin precession by an angle of 180� around the 3-axis
on particle B . This maps the states [⇧2'⌦  ] to

⇥�
1C_A ⌦ i�3B

�
· ⇧2'⌦  

⇤
=

⇥
�2 ⌦ i

�
- h" |'iB - h# |'iC | #iB

 ⇤

Thus, particle B in Bob’s lab is now in state [-i'] = ['].
If Alice measures the value 3 for X then Bob performs a spin precession
by an angle of 180� around the 1-axis on particle B , which then ends up
in state [i'] = ['].
Finally, if Bob learns from Alice that she has measured the value 4 for X
he performs a spin precession by an angle of 180� around the 2-axis on
particle B , and B then ends up in state ['].
In all four instances, particle B in Bob’s lab ends up in state [']; i.e., the
initial state, ['], of particle C captured by Alice has been teleported to
particle B in Bob’s lab.
Note, however, that, for teleportation to work, Alice has to communicate
(classically) to Bob the value she has measured for the “observable” X !
(Generalizations to higher-dim. Hilbert spaces are straightforward.)

Experimental realization of teleportation: Zeilinger et al., 1997.



4. Time, Events and States in QM

So far, everything has been fairly clear. For, we have not spoken about
the role of time in QM and about the infamous measurement problem,
yet. Let’s conclude this lecture with a few comments on these crucial
matters! – Henceforth I focus attention on isolated physical systems...

The three conventional pillars QM rests upon:

1. In QM, “potential events” that might (but need not) happen in the
future are descriibed by a classical alternative, namely by a partition
of unity, F, by disjoint orthogonal projections, ⇡, acting on some
Hilbert space whose sum equals unity, 1.

2. In the Heisenberg picture, the dependence of potential events on
the time of their possible occurrence is described by the well known
Heisenberg equations, which are perfectly deterministic. – How
then does randomness enter QM?

3. In QM, the “state” of a physical system at time t is described
by a “quantum probability measures”, !t , that assigns to every
projection ⇡ representing a potential event that might occur at time
t, or later, an a-priori probability of occurrence denoted by

!t(⇡) 2 [0, 1], (Born’s Rule)



The Fourth Pillar of QM : Decline of Potentialities
“Indeed, it is evident that the mere passage of time itself is destructive
rather than generative [...], because change is primarily a ‘passing
away’.” (Aristotle, Physics)

Our task is now to formulate a precise Law that determines whether a
potential event possibly occurring at time t, in the sense described
above, has a chance to actually occur at a time � t.

Let E�t consist of all operators arising (by taking linear combinations of
products) from projections, ⇡, representing potential events possibly
occurring at time t or later. One can argue convincingly that, because of
interactions of electrically charged matter with the quantized electro-
magnetic field, the following

4. “Principle of Declining Potentialities” (PDP)

E�t 0 $ E�t , 8 t 0 > t

holds. Thanks to this principle and to the phenomenon of entanglement,
a state, !t , determines a unique partition of unity F(!t) ⇢ E�t by po-
tential events ... of which one will actually happen (actualize) at time t:



State Reduction Postulate & Evolution of States
State Reduction Postulate: At every time t, some event ⇡⇤,t 2 F(!t)

actually happens. The probabilty, prob(⇡⇤,t), that ⇡⇤,t happens,
predicted by Quantum Mechanics, is given by Born’s Rule (BR):

prob(⇡⇤,t) = !t(⇡⇤,t), ⇡⇤,t 2 F(!t)

Let dt > 0 be the “time step.” The state !t and the event ⇡⇤,t uniquely
determine a state !t+dt at time t + dt in the range of ⇡⇤,t , which then
determines a unique partition of unity F(!t+dt) ⇢ E�t+dt by potential
events, of which one, ⇡⇤,t+dt , actually happens at time t + dt; etc.

Thus, in the Heisenberg picture, the evolution of states of an isolated
physical system follows a stochastic history (H) of random events (E),�
⇡⇤,t

 
t2R, on a tree-like structure (T):

(!t ,⇡⇤,t) ! state !t+dt
PDP! partition F(!t+dt) of 1 by possible events

SRP! an actual event, ⇡⇤,t+dt 2 F(!t+dt), happens (with Born Rule!)

(!t+dt , ⇡⇤,t+dt) ! !t+2dt
PDP! partition F(!t+2dt) of 1 · · ·

This has motivated me to call this formalism “ETH Approach to QM”:



A Metaphorical Picture of “ETH”
The “ETH-Approach is the subject of further lectures.

Have I lost some of you in the subtleties of the “dada” of QM?

Let us not forget what Galileo has taught us: “The Book of Nature is
written in mathematical language.”


